点击上方“正运动小助手”,随时关注新动态!
本篇文章我们主要介绍正运动技术动态链接库环境配置以及EtherCAT运动控制器在ROS下的单轴运动。
在正式学习之前,我们先了解一下正运动技术的EtherCAT运动控制器ZMC432和ZMC408CE。这两款产品分别是32轴,8轴EtherCAT运动控制器。
ZMC432功能简介
ZMC432是正运动推出的一款多轴高性能EtherCAT总线运动控制器,具有EtherCAT、EtherNET、RS232、CAN和U盘等通讯接口,ZMC系列运动控制器可应用于各种需要脱机或联机运行的场合。
ZMC432最多可支持32轴运动控制,支持直线插补、任意圆弧插补、空间圆弧、螺旋插补、电子凸轮、电子齿轮、同步跟随等功能。
ZMC432支持32轴脉冲输入与编码器反馈,通用IO包含24路输入口和12个输出口;2路AD,2路DA;其中特定输出口支持高速PWM控制。
ZMC432通过EtherCAT和CAN总线进行硬件资源扩展,可扩展至4096路输入和4096路输出。
ZMC408CE功能简介
ZMC408CE是正运动推出的一款多轴高性能EtherCAT总线运动控制器,具有EtherCAT、EtherNET、RS232、CAN和U盘等通讯接口,ZMC系列运动控制器可应用于各种需要脱机或联机运行的场合。
ZMC408CE支持8轴运动控制,最多可扩展至32轴,支持直线插补、任意圆弧插补、空间圆弧、螺旋插补、电子凸轮、电子齿轮、同步跟随等功能。
ZMC408CE支持8轴运动控制,可采用脉冲轴(带编码器反馈)或EtherCAT总线轴,通用IO包含24路输入口和16路输出口,部分IO为高速IO,模拟量AD/DA各两路,EtherCAT最快125us的刷新周期。
ZMC408CE支持8个通道的硬件比较输出、硬件定时器、运动中精准输出,还支持8通道PWM输出,对应的输出口为OUT0-7,支持8个通道同时触发硬件比较输出。
ZMC408CE可灵活进行硬件资源扩展,通过CAN或EtherCAT总线可扩展至4096个输入和4096个输出。
→ZMC432,ZMC408CE均使用同一套API函数,均支持C、C++、C#、LabVIEW、Python、Delphi等开发语言,支持VC6.0、VB6.0、Qt、.Net等平台,支持Windows、Linux、WinCE、iMac等操作系统。
上节课程中,我们介绍了ROS应用背景和Ubuntu18.04安装ROS Melodic详细过程,并且通过ROS编程案例“消息发布和订阅”来详细说明正运动技术EtherCAT运动控制器ROS的应用开发。详情点击→EtherCAT运动控制器在ROS上的应用(上)。
01配置正运动技术动态链接库环境
1.添加动态链接库
在程序包目录zmotion(catkin_ws/src/zmotion/)下新建文件夹lib,存放动态链接库libzmotion.so。
在CMakeLists.txt中添加第三方库路径(build下):
link_directories( lib${catkin_LIB_DIRS})并在CMakeLists.txt文件中链接动态链接库(调用链接库时文件名去掉lib和.so):target_link_libraries(talker ${catkin_LIBRARIES} zmotion)2.添加库函数zmcaux.cpp、zmotion.h、zmcaux.h添加zmcaux.cpp文件到catkin_ws/src/zmotion/src目录下:
添加头文件zmotion.h、zmcaux.h到catkin_ws/src/zmotion/include/ zmotion目录下:
并在CMakeLists.txt中添加这三个库文件:
add_executable(talker src/talker.cppsrc/zmcaux.cppinclude/zmotion/zmotion.hinclude/zmotion/zmcaux.h)
修改头文件引用,如下图所示(要填include文件的相对地址,zmotion为程序包名):
#include"zmotion/zmotion.h"#include"zmotion/zmcaux.h"
02正运动控制器在ROS下的单轴运动
talker节点实现轴0的运动,并将其位置实时发送给listener节点,修改talker.cpp如下:
1.添加句柄和头文件#include"zmotion/zmotion.h"#include"zmotion/zmcaux.h"ZMC_HANDLE g_handle=NULL;
2.通过EtherNET链接运动控制器
ZMC_LinuxLibInit();//以太网(Ethernet)链接char ipaddr[16] = {"192.168.0.11"};int x =ZAux_OpenEth(ipaddr,&g_handle); //***ZMCROS_INFO("以太网链接控制器:%d",x);//返回0则连接成功
3.实现单轴运动
ZAux_Direct_SetSpeed(g_handle, 0, 200); //设置轴0运动速度为200units/sZAux_Direct_SetAccel(g_handle, 0, 2000); //设置轴0加速度为2000units/s/sZAux_Direct_SetDecel(g_handle, 0, 2000); //设置轴0减速度为2000units/s/sZAux_Direct_SetSramp(g_handle, 0, 100); //设置轴0 S曲线时间100msZAux_Direct_Single_Move(g_handle, 0, 300); //轴0 相对与当前位置运动100 units
4.将实时位置发送给listener节点
float piValue;while (ros::ok()){ std_msgs::Float64 msg; ZAux_Direct_GetMpos(g_handle, 0, & piValue);//获取时候 msg.data = piValue;//输出,用来替代prinf/cout ROS_INFO("Position is: %f", msg.data); chatter_pub.publish(msg); ros::spinOnce();//休眠,来使发布频率为10Hz loop_rate.sleep();}5.编译cd ~/catkin_ws/catkin_make
6.运行程序
//打开一个新终端roscore//打开另一个新终端cd ~/catkin_ws/rosrun zmotion talker//打开另一个新终端cd ~/catkin_ws/rosrun zmotion listener运行效果如下,实时输出位置:
此外,我们在上位机上的示波器上可以看见,轴0做S曲线运动:
本次,正运动技术EtherCAT运动控制器在ROS上的应用(下),就分享到这里。
更多精彩内容请关注“正运动小助手”公众号,需要相关开发环境与例程代码,请咨询正运动技术销售工程师:400-089-8936。
本文由正运动技术原创,欢迎大家转载,共同学习,一起提高中国智能制造水平。文章版权归正运动技术所有,如有转载请注明文章来源。
回顾往期内容
开奖啦!参与《运动控制系统应用与实践》赠书活动的粉丝们看这里
送书福利!全自主IDE的《运动控制系统应用与实践》
EtherCAT运动控制器在ROS上的应用(上)
皮带同步跟随:EtherCAT超高速实时运动控制卡XPCIE1032H上位机C#开发(十四)
自定义电子凸轮曲线的运动:EtherCAT超高速实时运动控制卡XPCIE1032H上位机C#开发(十三)
连续轨迹加工和速度前瞻:EtherCAT超高速实时运动控制卡XPCIE1032H上位机C#开发(十二)
PT/PVT运动模式介绍:EtherCAT超高速实时运动控制卡XPCIE1032H上位机C#开发(十一)
项目工程下载与XML配置文件下载:EtherCAT超高速实时运动控制卡XPCIE1032H上位机C#开发(十)
EtherCAT驱动器回零与控制器回零:EtherCAT超高速实时运动控制卡XPCIE1032H上位机C#开发(九)
二维/三维的多轴PSO视觉飞拍与精准输出:EtherCAT超高速实时运动控制卡XPCIE1032H上位机C#开发(八)
单轴PSO视觉飞拍与精准输出:EtherCAT超高速实时运动控制卡XPCIE1032H上位机C#开发(七)
硬件位置比较输出和编码器锁存:EtherCAT超高速实时运动控制卡XPCIE1032H上位机C#开发(六)
EtherCAT超高速实时运动控制卡XPCIE1032H上位机C#开发(五):通过RTSys进行调试与诊断
EtherCAT超高速实时运动控制卡XPCIE1032H上位机C#开发(四):板载IO与总线扩展IO的编码器与脉冲配置的应用
EtherCAT超高速实时运动控制卡XPCIE1032H上位机C#开发(三):EtherCAT总线CSP,CSV,CST模式切换
EtherCAT超高速实时运动控制卡XPCIE1032H上位机C#开发(二):EtherCAT总线初始化
EtherCAT超高速实时运动控制卡XPCIE1032H上位机C#开发(一):驱动安装与建立连接
全国产EtherCAT运动控制边缘控制器(六):RtBasic文件下载与连续轨迹加工的Python+Qt开发
全国产EtherCAT运动控制边缘控制器(五):IO配置与回零运动的Python+Qt开发
全国产EtherCAT运动控制边缘控制器(四):轴参数配置与单轴运动PC上位机C++控制
全国产EtherCAT运动控制边缘控制器(三):外设读写与RTSys开发诊断
全国产EtherCAT运动控制边缘控制器(二):统一的上位机API接口
全国产EtherCAT运动控制边缘控制器(一):ZMC432H硬件接口
高柔SS加减速曲线在锂电池焊接中的应用
EtherCAT和Ethernet的不同点有哪些, 通信周期又是什么意思?
工业以太网时代,该如何选择总线运动控制器?
EtherCAT运动控制器在数控加工手轮随动中的应用
EtherCAT运动控制器在数控加工手轮随动中的应用之C++
正运动技术运动控制器如何快速实现单轴/多轴同步跟随功能?
运动控制器PSO视觉飞拍与精准输出的C++开发(三):二维/三维/多轴PSO输出
运动控制器PSO视觉飞拍与精准输出的C++开发(二):多轴PSO等距/周期输出
运动控制器PSO视觉飞拍与精准输出的C++开发(一):单轴PSO
运动控制器八通道PSO的视觉飞拍与精准输出
Windows实时运动控制软核(七):LOCAL高速接口测试之Labview
Windows实时运动控制软核(六):LOCAL高速接口测试之Matlab
Windows实时运动控制软核(五):LOCAL高速接口测试之VC6.0
Windows实时运动控制软核(四):LOCAL高速接口测试之VB.NET
Windows实时运动控制软核(三):LOCAL高速接口测试之C++
Windows实时运动控制软核(二):LOCAL高速接口测试之Qt
Windows实时运动控制软核(一):LOCAL高速接口测试之C#
开放式激光振镜运动控制器:C++ 快速调用图形库应用
开放式激光振镜运动控制器:C++振镜矫正方法与实现
开放式激光振镜运动控制器:C++快速开发
开放式激光振镜运动控制器(五):ZMC408SCAN 光纤激光器的能量控制
开放式激光振镜运动控制器(四):ZMC408SCAN振镜控制光纤激光器加工
开放式激光振镜运动控制器(三):ZMC408SCAN轴控光纤激光器加工
开放式激光振镜运动控制器(二):ZMC408SCAN激光接口与控制
开放式激光振镜运动控制器(一):ZMC408SCAN接口与功能
运动控制器PSO位置同步输出(三):高精度等间距二维三维PSO输出
运动控制器PSO位置同步输出(二):PSO模式详解
运动控制器PSO位置同步输出(一):硬件平台与PSO指令简介
经济型EtherCAT运动控制器(十):EtherCAT总线快速入门
经济型EtherCAT运动控制器(九):示波器使用
经济型EtherCAT运动控制器(八):轴参数与运动指令
经济型EtherCAT运动控制器(七):运动缓冲
经济型EtherCAT运动控制器(六):数据储存
经济型EtherCAT运动控制器(五):多任务运行
经济型EtherCAT运动控制器(四):ModbusRTU或ModbusTcp与触摸屏通讯
经济型EtherCAT运动控制器(三):PLC实现多轴直线插补与电子凸轮
经济型EtherCAT运动控制器(二):ZBasic实现多轴直线插补运动
经济型EtherCAT运动控制器(一):功能简介与应用场景
运动控制+机器视觉Demo软件框架(三):视觉纠偏+连续插补的配方编辑
运动控制+机器视觉Demo软件框架(二):移动标定和形状匹配
运动控制+机器视觉Demo软件框架(一):机械参数和配方文件的管理
运动控制+机器视觉Demo软件框架系统概述
开放式激光振镜+运动控制器(六):双振镜运动
开放式激光振镜+运动控制器(五):ZMC408SCAN控制器硬件介绍
开放式激光振镜+运动控制器(四):PSO位置同步输出在激光振镜加工中的应用
开放式激光振镜+运动控制器(三):振镜矫正
开放式激光振镜+运动控制器(二):振镜填充
开放式激光振镜+运动控制器(一):硬件接口
EtherCAT轴扩展模块EIO16084在运动控制系统中的应用EtherCAT运动控制器中脉冲接口的快速调试与诊断EtherCAT运动控制器之ZMIO300模块的使用EtherCAT运动控制器的PLC编程(四) 电子凸轮
EtherCAT运动控制器的PLC编程(三) 电子齿轮
EtherCAT运动控制器的PLC编程(二) 圆弧插补
EtherCAT运动控制器的PLC编程(一) 直线插补
快速入门 | 篇二十一:运动控制器ZHMI组态编程简介一
快速入门 | 篇二十一:正运动技术运动控制器自定义通讯
快速入门 | 篇二十:正运动技术运动控制器MODBUS通讯
快速入门 | 篇十九:正运动技术运动控制器多轴同步与电子凸轮指令简介
快速入门 | 篇十八:正运动技术脉冲型运动控制器的使用
快速入门 | 篇十七:运动控制器多轴插补运动指令的使用
快速入门 | 篇十六:正运动控制器EtherCAT总线快速入门
快速入门 | 篇十五:运动控制器运动缓冲简介
快速入门 | 篇十四:运动控制器基础轴参数与基础运动控制指令
快速入门 | 篇十三:正运动技术运动控制器ZDevelop 编程软件的使用
快速入门 | 篇十二:正运动技术运动控制器U盘接口的使用
快速入门 | 篇十一:正运动技术运动控制器中断的应用
快速入门 | 篇十:运动控制器多任务运行特点
快速入门 | 篇九:如何进行运动控制器示波器的应用?
快速入门 | 篇八:如何进行运动控制器EtherCAT总线的基础使用?
快速入门 | 篇七:如何进行运动控制器ZCAN总线扩展模块的使用?
快速入门 | 篇六:如何进行运动控制器数据与存储的应用?
快速入门 | 篇五:如何进行运动控制器输入/输出IO的应用?
快速入门 | 篇四:如何进行运动控制器与触摸屏通讯?
快速入门 | 篇三:如何进行运动控制器ZPLC程序开发?
快速入门 | 篇二:如何进行运动控制器ZBasic程序开发?
快速入门 | 篇一:如何进行运动控制器固件升级?
EtherCAT与RTEX驱动器轴回零的配置与实现
G代码在运动控制器上的应用
运动控制器的自定义G代码编程应用
离线仿真调试,加快项目进度!
8轴EtherCAT轴扩展模块EIO24088的使用
运动控制器之追剪应用Demo
运动控制器激光振镜控制运动控制器轴回零的配置与实现
运动控制器位置锁存功能的应用
ZMC运动控制器SCARA机械手应用快速入门
运动控制器RTEX总线使用入门
正运动技术CAD导图软件配合控制器的使用方法
EtherCAT总线运动控制器应用进阶一
EtherCAT运动控制卡开发教程之Qt(下):SCARA机械手正反解的建立
EtherCAT运动控制卡开发教程之Qt(中):小线段连续轨迹加工、暂停与继续
EtherCAT运动控制卡开发教程之Qt(上):开发环境配置与简单运动控制应用
EtherCAT运动控制卡开发教程之python
EtherCAT运动控制卡的SCARA等机器人指令的应用
EtherCAT运动控制卡的PWM与模拟量输出和运动速度同步
EtherCAT运动控制卡硬件比较输出以及编码器锁存
EtherCAT运动控制卡IO动作与运动控制的同步
EtherCAT运动控制卡实时程序的运行和读写控制
EtherCAT运动控制卡的运动暂停、恢复与系统安全设置
EtherCAT运动控制卡小线段前瞻的连续插补运动
EtherCAT运动控制卡的多轴插补运动和手轮运动
EtherCAT运动控制卡的辅助调试工具与方法介绍
EtherCAT运动控制卡的总线轴参数设置和轴运动
EtherCAT运动控制卡的硬件接线与C#的硬件外设读写与回零运动
EtherCAT运动控制卡的硬件接线与C#的单轴运动控制
简单易用的运动控制卡(十六):螺距补偿和反向间隙补偿
简单易用的运动控制卡(十五):PC启停控制器的实时程序
简单易用的运动控制卡(十四):PWM、模拟量输出与运动控制的同步
简单易用的运动控制卡(十三):IO动作与运动控制的同步
简单易用的运动控制卡(十二):运动控制系统的安全设置
简单易用的运动控制卡(十一):运动的暂停恢复和速度倍率设置
简单易用的运动控制卡(十):连续插补和小线段前瞻
简单易用的运动控制卡(九):圆弧插补和螺旋插补
简单易用的运动控制卡(八):直线插补和手轮运动
简单易用的运动控制卡(七):一次性加载多条连续小线段数据
简单易用的运动控制卡(六):Basic文件下载和连续轨迹加工
简单易用的运动控制卡(五):IO配置与回零运动
简单易用的运动控制卡(四):函数库的封装
简单易用的运动控制卡(三):轴参数配置和单轴运动控制
简单易用的运动控制卡(二):外设读写与ZDevelop诊断
简单易用的运动控制卡(一):硬件接线和上位机开发
运动控制卡在ROS上的应用(下)
运动控制卡在ROS上的应用(上)
EtherCAT运动控制卡和LabVIEW构建智能装备(五)
EtherCAT运动控制卡和LabVIEW构建智能装备(四)
EtherCAT运动控制卡和LabVIEW构建智能装备(三)
EtherCAT运动控制卡和LabVIEW构建智能装备(二)
EtherCAT运动控制卡和LabVIEW构建智能装备(一)
EtherCAT运动控制卡在LabVIEW中的运动控制与数据采集
运动控制卡应用开发教程之MATLAB
运动控制卡应用开发教程之C++
运动控制卡应用开发教程之Python
运动控制卡应用开发教程之C#
运动控制卡应用开发教程之Linux
运动控制卡应用开发教程之VB.NET
运动控制卡应用开发教程之VB6.0
运动控制卡应用开发教程之VC6.0
运动控制卡应用开发教程之使用Qt
运动控制卡应用开发教程之LabVIEW
运动控制卡应用开发教程之激光振镜控制
运动控制卡应用开发教程之硬件比较输出
关于正运动技术
深圳市正运动技术有限公司成立于2013年,专注于纯国产运动控制技术研究和通用运动控制软硬件平台和产品的研发,是国家级高新技术和专精特新“小巨人”企业。
正运动技术汇集了来自华为、中兴等公司的优秀人才。力求创新,目前公司拥有专利、著作权等知识产权五十余项。在坚持自主创新的同时,积极联合各大高校和科研院所协同运动控制基础技术的研究,是国内工控领域发展最快的企业之一,也是国内少有、完整掌握运动控制核心技术和实时工控软件平台技术的企业。
正运动技术除本部研发中心外,设有中山、武汉、上海三个研发分部。为更好地服务客户,本部之外设有苏州、东莞两个区域性服务中心,设有佛山、厦门、青岛、西安、武汉、成都、天津、郑州等销售和技术服务机构。
经过众多合作伙伴多年的开发应用,正运动技术的产品广泛地应用于3C电子、半导体、新能源、机器人、包装印刷、纺织服装、激光加工、医疗制药、数控机床、传统加工等领域。
|